教学目标 | 1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地 寻找不等式的解,会把不等式的解集正确地表示到数轴上; 2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想; 3、通过对不等式、不等式解与解集的探究,引导学生在思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。 | ||
教学难点 | 正确理解不等式、 不等式解与解集的意义,把不等式的解集正确地表示到数轴上。 | ||
知识重点 | 建立方程解决实际问题,会解 “ax+b=cx+d”类型的一元一次方程 | ||
教学过程(师生活动) | 设计理念 | ||
提出问题 | 多媒体演示: 1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢? 2、一辆匀速行驶的汽车在11:20时距离A地50千米。要在12:00以前驶过A地,车速应该具备什么条件?若设车速为每小时x千米,能用一个式子表示吗? | 通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,激发他们的学习兴趣. | |
探究新知 | (一)不等式、一元一次不等式的概念
2、下列式子中哪些是不等式? (1)a+b=b+a (2)-3>-5 (3)x≠l (4)x十3>6 (5) 2m< n (6)2x-3 上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式. 3、小组交流:说说生活中的不等关系. 分组活动.先思考,然后小组内互相交流并做记录,最后各组选派代表发言,在此基础上引出不等号“≥”和“≤”.补充说明:用“≥”和“≤”表示不等关系的式子也是不等式. (二)不等式的解、不等式的解集 问题1.要使汽车在12:00以前驶过A地,你认为车速应该为多少呢? 问题2.车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢? 问题3.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.刚才同学们所说的这些数,哪些是不等式 > 50的解? 问题4,数中哪些是不等式 > 50的解: 76,73,79,80,74. 9,75.1,90,60 你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律? 讨论后得出:当x > 75时,不等式 > 50成立;当x < 75 或x=75时,不等式 > 50不成立。这就是说,任何一个大于75的数都是不等式 > 50的解,这样的解有无数个。因此,x > 75表示了能使不等式 > 50成立的“x”的取值范围。我们把它叫做不等式 > 50的解的集合,简称解集.这个解集还可以用数轴来表示(教师示范表示方法).回到前面的问题,要使汽车在12:00以前驶过A地,车速必须大于每小时75千米。 一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式. | 引导学生仔细观察并归纳出不等式的意义。
在甄别不等式的过程中,加深对不等式意义的理解,引出一元一次不等式的概念.
培养学生主动参与、合作交流的意识,同时体会到在现实生活中,不等关系要比相等关系多 得多.“补充说明”是为了让学生能完整地理解不等式的定义.
让学生充分发表意见,并通过计算、动手验证、动脑思考,初 步体会不等式解的意义以及不 等式解与方程解的不同之处.
遵循学生的认知规律,有意 识、有计划、有条理地设计一些 引人入胜的问题,可让学生始终处在积极的思维状态,不知不觉中接受了新知识,分散了难点. | |
巩固新知 |
-4,-2. 5,0,1,2.5,3,3.2,4.8,8,12 2、直接想出不等式的解集,并在数轴上表示出来: (1)x+3 > 6(2)2x < 8(3)x-2 > 0 |
| |
拓广探索 比较分析 | 对于问题1还有不同的未知数的设法吗? 学生思考回答:若设去年购买计算机x台,得方程 若设今年购买计算机x台,得方程 | 巩固对不等式解的概念的理解。巩固对不等式解集概念的理解,并会在数轴上表示不等式的解集。 | |
解决问题 | 某开山工程正在进行爆破作业.已知导火索燃烧的速度是每秒0.8厘米,人跑开的速度是每秒4米.为了使放炮的工人在爆炸时能跑到100米以外的安全地带,导火索的长度应超过多少厘米? | 进一步巩固所学知识,感受新知识的用途。 | |
总结归纳 | 1、不等式与一元一次不等式的概念; 2、不等式的解与不等式的解集; 3、不等式的解集在数轴上的表示. | 通过总结归纳,完善学生已有的知识结构。 | |
小结与作业 |
| ||
布置作业 | 1、必做题:教科书第134页习题9.1第1、2题 2、选做题:教科书第134页习题9. 1第3题. 3、备选题: (1)用不等式表示下列数量关系: ①a比1大; ②x与一3的差是正数; ③x的4倍与5的和是负数 (2)在-4,-2,-1,0,1,3中,找出使不等式成立的x值: (1)x+5 > 3,(2) 3x < 5 (3)在数轴上表示下列不等式的解集: ① x < 2 ② x >-3 (4)不等式x < 5有多少个解?有多少个正整数解? |
| |
本课教育评注(课堂设计理念,实际教学效果及改进设想) | |||
本课设置了丰富的实际情境,比如跷跷板游戏、爆破问题等,研究这些问题,可以使学生体会到现实生活中存在着大量的不等关系,不等式是现实世界中不等关系的一种数学表示形式,它也是刻画现实世界中量与量之间关系的有效模型. 教学中要突出知识之间的内在联系.不等式与方程一样,都是反映客观事物变化规律及其关系的模型.在教学中,类比已经学过的方程知识,引导学生自己去探索、发现、甄别,从而得出一元一次不等式、不等式的解与解集的意义. 教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果.因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程.这种教学方法以“生动探索”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想像力和思维力,再加上多媒体的运用,使学生真正成为学习的主体。 | |||
教学目标 | 1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质; 2、初步体会不等式与等式的异同; 3、通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性. | ||
教学难点 | 正确运用不等式的性质。 | ||
知识重点 | 理解并掌握不等式的性质。 | ||
教学过程(师生活动) | 设计理念 | ||
提出问题 | 教师出示天平,并请学生仔细观察老师的操作过程,回答下列问题: 1、天平被调整到什么状态? 2、给不平衡的天平两边同时加人相同质量的砝码,天平会有什么变化? 3、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化? 4、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢? | 通过天平演示,结合自己的观察和思考,让学生感受生活中的不等关系。 | |
探究新知 | 1、用“>”或“<”填空. (1)-1 < 3 -1+2 3+2 -1-3 3-3 (2) 5 >3 5+a 3+a 5-a 3-a (3) 6 > 2 6×5 2×5 6×(-5)2×(-5) (4) -2 < 3(-2)×6 3×6 (-2)×(-6) 3×(一6) (5)-4 >-6 (-4)÷2(-6)÷2 (-4)十(-2) (-6)十(-2) 2、从以上练习中,你发现了什么?请你再用几个例子试一试,还有类似的结论吗?请把你的发现告诉同学们并与他们交流. 3、让学生充分发表“发现”,师生共同归纳得出: 不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变. 不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变. 不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变. 4、你能说出不等式性质与等式性质的相同之处与不同 之处吗? | 通过动手、动口、动脑,引导学生运用类比、归纳的数学思想去探究问题,在品尝成功的喜悦中激发出学数学的兴趣。
渗透类比思想。 | |
探究新知 |
-4,-2. 5,0,1,2.5,3,3.2,4.8,8,12 2、直接想出不等式的解集,并在数轴上表示出来: (1)x+3 > 6(2)2x < 8(3)x-2 > 0 |
| |
巩固新知 |
(1)∵a < b ∴ a-b < b-b (2)∵a < b ∴ (3)∵a < b ∴ -2a < -2b (4)∵-2a > 0 ∴ a > 0 (5)∵-a < 0 ∴ a < 3
(1)∵ 2a > 3a ∴ a是 数 (2)∵ ∴ a是 数 (3)∵ax < a且 x > 1 ∴ a是 数
(1)a-3 > b-3 (2) (3)-4a > -4b | 设置这几个练习,既可以培养学生思考的能力,又可强化对概念的理解,使学生真正认识不等式的性质。 | |
总结归纳 |
在学生自己总结的基础上,教师应强调两点: 1、等式性质与不等式性质的不同之处; 2、在运用“不等式性质3"时应注意的问题. | 学生通过总结,可以帮助自 己从整体上把握本节课所学知 识,培养良好的学习习惯,也为 下节课学好解不等式打下基础。 | |
小结与作业 |
| ||
布置作业 | 1、必做题:教科书第134页习题9.1第4、5题 2、选做题:教科书第134页习题9. 1第7题. 3、备选题: |
| |
本课教育评注(课堂设计理念,实际教学效果及改进设想) | |||
本节课设计旨在让学生经历通过实验、猜测、验证,发现不等式性质的探索过程.用类比和实验探究法作为主要方法贯穿整个课堂教学之中,并以多媒体作为辅助教学手段.让学生充分进行讨论交流,在自主探索和合作学习中掌握不等式的性质.这样就能有效地突破本节课的难点,为学生今后的学习打下坚实的基础. 教学过程中贯穿了一条“创设情境,引出新知—实验讨论,得出性质—探究辨析,突破难点—运用性质,解决问题”的线索,使学生真正成为学习的主人.在师生交流合作中营造互动的氛围,让学生积极主动地参与教学的整个过程,使他们的学习态度、情感意志和个性品质等都得到不同程度的提高. 为了突破教学难点,让学生能熟练准确地运用“不等式性质3",本课设计了多样化的练习以巩固所学知识.在学生回答、板演、讨论的过程中,课堂气氛被激活,教学难点被突破,使学生在轻松愉快的氛围中扎实地掌握性质并灵活运用.同时,学习伙伴之间进行了思维的碰撞和沟通. | |||
教学目标 | 1、会根据“不等式性质1 "解简单的一元一次不等式,并能在数轴上表示其解集; 2、学会运用类比思想来解不等式,培养学生观察、分析和归纳的能力; 3、在积极参与数学活动的过程中,培养学生大胆猜想、勇于发言与合作交流的意识和实事求是的态度以及思考的习惯. | ||
教学难点 | 根据“不等式性质1”正确地解一元一次不等式。 | ||
知识重点 | 根据“不等式性质1”正确地解一元一次不等式。 | ||
教学过程(师生活动) | 设计理念 | ||
提出问题 | 小希就读的学校上午第一节课上课时间是8点开始.小希家距学校有2千米,而他的步行速度为每小时10千米.那么,小希上午几点从家里出发才能保证不迟到?
| 设里一个学生很熟悉的问题情境,能增强亲和力.经历由具体的实例建立不等式模型的过程,既可让学生感受不等式在实际生活中的应用,又非常自然地引入新课. | |
探究新知 |
先思考然后组内交流,作出记录,最后各组派代表发主。
显示全文
| ||