步遥情感网
您的当前位置:首页物理实验报告

物理实验报告

来源:步遥情感网


物理实验报告

姓名:吴倩珠

准考证号:256713200192

专业:建筑工程

物理实验报告

【实验】:等厚干涉实验

实验名称:等厚干涉

一.实验目的:

1. 理解牛顿环和劈尖干涉条纹的成因与等候干涉的含义:

2. 学会用等候干涉法测量薄膜厚度和透镜曲率半径,并熟练运用逐差法处理实验数据

3. 学习正确使用读数显微镜的方法。

二. 实验仪器

测量显微镜、牛顿环、钠光灯、劈尖装置和待测细丝。

三.实验原理

当一束单色光入射到透明薄膜上时,通过薄膜上下表面依次反射而产生两束相干光。如果这两束反射光相遇时的光程差仅取决于薄膜厚度,则同一级干涉条纹对应的薄膜厚度相等,这就是所谓的等厚干涉。

本实验研究牛顿环和劈尖所产生的等厚干涉。 1. 等厚干涉

如图3-17-1所示,玻璃板A和玻璃板B二者叠放起来,中间加有一层空气(即形成了空气劈尖)。设光线1垂直入射到厚度为d的空气薄膜上。入射光线在A板下表面和B板上表面分别产生反射光线2和2´,二者在A板上方相遇,由于两束光线都是由光线1分出来的(分振幅法),故频率相同、相位差恒定(与该处空气厚度d有关)、振动方向相同,因而会产生干涉。我们现在考虑光线2和2´的光程差与空气薄膜厚度的关系。显然光线2´比光线2多传播了一段距离2d。此外,由于反射光线2´是由光密媒质(玻璃)向光疏媒质(空气)反射,会产生半波损失。故总的光程差还应加上半个波长/2,即2d/2。

根据干涉条件,当光程差为波长的整数倍时相互加强,出现亮纹;为半波长的奇数倍时互相减弱,出现暗纹。

图3-17-1 等厚干涉的形成 2KK1,2,3,出现亮纹2(2K1)2d2 K0,1,2,出现暗纹 2因此有:

光程差取决于产生反射光的薄膜厚度。同一条干涉条纹所对应的空气厚度相同,故

称为等厚干涉。

2. 牛顿环

当一块曲率半径很大的平凸透镜的凸面放在一块光学平板玻璃上,在透镜的凸面和平板玻璃间形成一个上表面是球面,下表面是平面的空气薄层,其厚度从中心接触点到边缘逐渐增加。离接触点等距离的地方,厚度相同,等厚膜的轨迹是以接触点为中心的圆。

图3-17-2 凸透镜干涉光路图 如图3-17-2所示,当透镜凸面的曲率半径R很大时,在P点处相遇的两反射光线的几何程差为该处空气间隙厚度d的两倍,即2d。又因这两条相干光线中一条光线来自光密媒质面上的反射,另一条光线来自光疏媒质上的反射,它们之间有一附加的半波损失,所以在P点处得两相干光的总光程差为:

当光程差满足:

2d2 (3-17-1)

2m12m2 m=0,1,2…时,为暗条纹

2 m=1,2,3…时,为明条纹,

设透镜L的曲率半径为R,r为环形干涉条纹的半径,且半径为r的环形条纹下面的空气厚度为d,则由图3-17-2中的几何关系可知:

R2(Rd)2r2R22Rdd2r2

2R (3-17-2) 因为R远大于d,故可略去d项,则可得:

这一结果表明,离中心越远,光程差增加愈快,所看到的牛顿环也变得越来越密。将r2R2 (3-17-2)式代入(3-17-1)式有:

则根据牛顿环的明暗纹条件:

2dr2r22m1R22 m=0,1,2… (暗纹)

r22mR22 m=1,2,3… (明纹)

由此可得,牛顿环的明、暗纹半径分别为:

rmmR (暗纹)

'rm(2m1)R2 (明纹)

式中m为干涉条纹的级数,rm为第m级暗纹的半径,rm′为第m级亮纹的半径。

以上两式表明,当已知时,只要测出第m级亮环(或暗环)的半径,就可计算出透镜的曲率半径R;相反,当R已知时,即可算出。

观察牛顿环时将会发现,牛顿环中心不是一点,而是一个不甚清晰的暗或亮的圆斑。其原因是透镜和平玻璃板接触时,由于接触压力引起形变,使接触处为一圆面;又镜面上可能有微小灰尘等存在,从而引起附加的程差。这都会给测量带来较大的系统误差。

我们可以通过测量距中心较远的、比较清晰的两个暗环纹的半径的平方差来消除附 加程差带来的误差。假定附加厚度为a,则光程差为:

2(da)dm2(2m1)2

2则

a2 将其代入(3-17-1)可得:rmR2Ra

2rmmR2Ra2rn取第m、n级暗条纹,则对应的暗环半径为: nR2Ra

2222rr(mn)Rrrmnmn将两式相减,得。由此可见与附加厚度a无关。

由于暗环圆心不易确定,故取暗环的直径替换,因而,透镜的曲率半径为:

22DmDnR4(mn) (3-17-3)

由此式可以看出,半径R与附加厚度无关,且有以下特点: (1)R与环数差m-n有关。

22DDmn (2)对于()由几何关系可以证明,两同心圆直径平方差等于对应弦的

平方差。因此,测量时无须确定环心位置,只要测出同心暗环对应的弦长即可。

D,D,就可求的透镜的

本实验中,入射光波长已知(λ=5.3 nm),只要测出(mn)曲率半径。

(二)劈尖干涉

在劈尖架上两个光学平玻璃板中间的一端插入一薄片(或细丝),则在两玻璃板间形成一空气劈尖。当一束平行单色光垂直照射时,则被劈尖薄膜上下两表面反射的两束光进行相干叠加,形成干涉条纹。其光程差为:

2d2 (d为空气隙的厚度)

产生的干涉条纹是一簇与两玻璃板交接线平行且间隔相等的平行条纹,如图(3-17-3)所示。

同样根据牛顿环的明暗纹条件有:

2d2(2m1)2, m=1,2,3… 时,为干涉暗纹。

2d22m2, m=1,2,3… 时,为干涉明纹。

显然,同一明纹或同一暗纹都对应相同厚度的空气层,因而是等厚干涉。同样易得,两

相邻明条纹(或暗条纹)对应空气层厚度差都等于2;则第m级暗条纹对应的空气层厚度

Dmm2,假若夹薄片后劈尖正好呈现N级暗纹,则薄层厚度为: 为:

DN2 (3-17-4)

用表示劈尖形空气间隙的夹角、s表示相邻两暗纹

间的距离、L表示劈间的长度,则有

2DsL

LDs2 则薄片厚度为:

tg (3-17-5)

由上式可见,如果求出空气劈尖上总的暗条纹数,或测出劈尖的L和相邻暗纹间的距离s,都可以由已知光源的波长测定薄片厚度(或细丝直径)D。

四.实验内容

1.用牛顿环测量透镜的曲率半径 图(3-17-4)为牛顿环实验装置。 (1)调节读数显微镜

先调节目镜到清楚地看到叉丝且分别与X、Y轴大致平行,然后将目镜固定紧。调节显微镜的镜筒使其下降(注意,应该从显微镜外面看,而不是从目镜中看)靠近牛顿环时,再自下而上缓慢地再上升,直到看清楚干涉条纹,且与叉丝无视差。

(2)测量牛顿环的直径

转动测微鼓轮使载物台移动,使主尺读数准线居主尺。旋转读数显微镜控制丝杆的螺旋,使叉丝的交点由暗斑中心向右移动,同时数出移过去的暗环环数(中心圆斑环序为0),当数到23环时,再反方向转动鼓轮(注意:使用读数显微镜时,为了避免引起螺距差,移测时必须向同一方向旋转,中途不可倒退,至于自右向左,还是自左向右测量都可以)。使竖直叉丝1-目镜;2-调焦手轮;3-物镜; 4-钠灯; 5-测微鼓轮;6-半反射镜;7-牛顿环;8-载物台 图3-17-4 牛顿环测量装置 图3-17-3劈尖干涉测厚度示意图 依次对准牛顿环右半部各条暗环,分别记下相应要测暗环的位置:X20、X19、X18、直到X10(下标为暗环环序)。当竖直叉丝移到环心另一侧后,继续测出左半部相应暗环的位置读数:由

X10XX、19直到20。

五.数据记录与处理:

1. 测量薄片的厚度

表1用劈尖测量薄片厚度试验数据,(已知钠黄光波长=5.3nm) i 1 2 3 4 5 6 7 8 9 10

测量结果表达式:e=e±U=7.92*10

-2

条纹数K 0 10 20 30 40 50 60 70 80 90 位置(mm) 0.000 2.523 4.651 7.830 9.885 11.8 13.151 15.355 17.024 19.235 didi5di(mm) 9.885 9.375 8.500 7.525 9.350 L左=0 L右=47.552 L=L1-L2=47.552 D平均=8.95 Ei=K*L*/2*di 7.08*10 7.47*10 8.24*10 9.31*10 7.49*10 E=7.92*10-2 -2-2-2-2-2s (eie)2/(n1) =0.884*10 -2± 0.01mm

注:Δd及L测量的仪器误差为0.01mm

2.利用牛顿环测量透镜曲面的曲率半径R

表2牛顿环的实验数据记录(实验中取m-n=5) 读数环次 标尺读数 左(mm) 右(mm) 第n环直径 (左-右) 12 11 10 9 8 7 6 5 4 3 27.332 27.235 27.125 27.035 26.905 26.7 26.653 26.490 26.394 25.168 21.180 21.278 21.380 21.484 21.614 21.736 21.863 22.047 22.165 22.358 6.152 5.957 5.745 5.551 5.291 5.053 4.798 4.443 4.229 3.810 -3

直径平方 (mm)2 相隔五环直径平方数之差(mm)2 Ri(m) 37.847 35.486 33.005 30.814 27.995 25.533 22.944 19.740 18.481 14.516 -3

D12-d7 D11-d6 D10-d5 D9-d4 D8-d3 R=12.779*10 12.314*10 12.542*10 13.285*10 12.333*10 13.439*10 -3 -3-3-3-3-3s(eie)2/(n1) -3 =0.76*10 (其中把e换成R) 结果表达式:R=R±U=12.779*10±0.005*10dm+dn取最大值d仪器误差为0.005mm

因篇幅问题不能全部显示,请点此查看更多更全内容